

Testing Phenomenological Auditory-Nerve Model Predictions for Selective Inner-Hair Cell Dysfunction Madhurima Patra, BS¹ Andrew Sivaprakasam, BS¹ David Axe, PhD³

¹Weldon School of Biomedical Engineering, Purdue University, ²Speech Language and Hearing Sciences, Purdue University, ³MathWorks, MA

Introduction

- Sensorineural hearing loss is a downstream result of (at least) **OHC and IHC-related dysfunction**
- IHC dysfunction stems from various pathophysiologies

- There is a significant need to accurately model how neural function is altered after IHC damage

Methods

Physiology:

-IHC Damage induced using 38mg/kg carboplatin (CA) in chinchillas Histologically determined : ~0% OHC loss, ~10% IHC loss with stereocilia loss in remaining fibers.

This work was funded by NIDCD F30DC020916 (A.S.), and NIDCD grant R01DC009838 (M.H.)

ANF model used to simulate rate level curves (RLVs) and phase-projected vector strength (VSpp) to compare physiological and model responses

200

80

Rate level curves

Driven rates were compared for physiological data (inset) and model responses for varying cihc values

- Arctan sigmoid estimate computed $\stackrel{<}{\lesssim}$ ¹⁶⁰ for each of the RLVs

- Dynamic range width calculated using $\overline{\underline{v}}$ threshold on slope of sigmoid fit

Saturation rate calculated using sigmoid parameters as $x \rightarrow \infty$

0.08

0.06

0.04

VSpp Best at Modulation Level (BML) shows gradual amplitude decrease in with reducing cihc down to 0.2

0.7

0.5

0.3

cihc values

01

0.9

- Exponential fit shows reduction in steeper regime, cihc lower inconsistent with ANF physiology

- This suggests that this best-fit model cihc needs to be > 0.2

Single-Unit

- RLVs for decreasing cihc values show a reduced slope translating to reduced dynamic range width

> cihc~=0.3 most closely matches physiological ANF data

- ANF physiological saturation rate drops after CA, but model saturated rates do not account for this drop for any cihc

uration	Measure	Best cihc
Satu	Dynamic Range	0.3
C	Saturation Rate	NO MATCH

Modulation coding

Stimulus	Ве
F ₀ 103 Rank 13	
F ₀ 103 Rank 3	
Sq25	
SAM	

A single unifying parameter cihc may not fully encapsulate the wide array of underlying pathophysiology behind IHC impairment

- Refine our optimization framework to improve best-fit cihc resolution

- Propose refinements to current AN model to better represent biophysical damage properties (e.g., ionic current reduction with stereocilia damage or EP reduction), i.e., to link DR, SR, and transduction-slope effects

- Apply framework to physiological data with OHC damage (e.g. PTS, Gentamicin) to identify matching cohc parameters

References:

- [1] Axe, D., Thesis, Purdue University 2017
- [3] Bruce, I., et al., Hearing Research, 2017

Conclusions

- The model **does not match** our in-vivo saturation rate values, despite matched spontaneous rate statistics and CF distribution

- Our varied best-fit cihc values for the same animal model highlights that IHC dysfunction is a key area for model improvement

Future Directions:

[2] Sivaprakasam, A., Schweinzger, I., Bharadwaj, H., Heinz, M., 46th Annual ARO MidWinter Meeting, 2023