

and tone complex coding in presence of IHC damage ---0 0---8---0---0

Graph from [1], SEM image from Vijaya Muthaiah 20 40 60 80 V Distance from Anos

Modeling (BEZ 2018 [3]):

- PSTH responses were simulated using the BEZ 2018 model using tone at best frequency of fiber as stimulus. Exponential curve was fitted in the first 50 ms of response
- to calculate the time constant of adaptation of firing.

To account for IHC damage

Acknowledgements:

R01DC009838 (M.H.)

 A DC shift (reduction) term was added in the C1+C2 filter output to induce a shift in spontaneous rate as observed in physiology

- To compensate for reduced driven rates, an increased redocking time constant(RTC) was used

This work was funded by NIDCD F30DC020916 (A.S.), and NIDCD grant

DC shift Rate of cihc Adaptation MAMMAN

Possible knobs for modeling IHC damage - Simulation results (without reducing cihc)

- Introducing a DC shift in the IHC transduction function, we get reduced spontaneous rates - Increasing the RTC allows us to get reduced driven rates

Driven - Results show that even with no change in cihc, effects similar to physiology can be simulated using the model.

- Reducing cihc shows change in curvature of the rate level curves with no effect on driven or spontaneous rates.

- Original mode + DC shift + increased RTC 180 cihc = 0.3cihc = 0.05cibc = 0-DC shift 120 Increased R 60 Reducing cihc 20 40 60 80 Intensity (db SPL)

100

damage.

physiology post IHC dysfunction

with cihc=1).

References: [1] Axe, D., Thesis, 2017

[4] Scheidt R. et al. Hear Res. 2011 [2] Patra, M., Sivaprakasam, A., Axe, D., Heinz, M., 184th Annual ASA Meeting, 2023 [5] Rønne, f., et al., JASA, 2012 [3] Bruce, I., et al., Hearing Research, 2018

As observed previously, citic parameter in itself is not able to capture the observed changes in single unit

- The proposed changes in parameters in the model including a DC shift in the transduction function and

increased redocking time constant allow the model to capture reduced driven and spontaneous rates (even

- However, when using the same parameters for comparing physiology using simulated EFRs, we find that

- This suggests that while a multi-parameter fit may be able to capture specific IHC damage for both single

unit and evoked responses, a more biophysically inspired modification to the model may be required to

capture the natural dependencies of spontaneous/driven rates and transduction-function slope on IHC

these parameters may not be sufficient to model CA damage without reducing cihc.

RTC

show: